
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.10 OCTOBER 2008
2519

LETTER

Design and Implementation of a Non-pipelined MD5 Hardware
Architecture Using a New Functional Description

Ignacio ALGREDO-BADILLO†a), Student Member, Claudia FEREGRINO-URIBE†b),
René CUMPLIDO†c), Nonmembers, and Miguel MORALES-SANDOVAL†d), Member

SUMMARY MD5 is a cryptographic algorithm used for authentication.
When implemented in hardware, the performance is affected by the data de-
pendency of the iterative compression function. In this paper, a new func-
tional description is proposed with the aim of achieving higher throughput
by mean of reducing the critical path and latency. This description can be
used in similar structures of other hash algorithms, such as SHA-1, SHA-2
and RIPEMD-160, which have comparable data dependence. The proposed
MD5 hardware architecture achieves a high throughput/area ratio, results of
implementation in an FPGA are presented and discussed, as well as com-
parisons against related works.
key words: MD5 algorithm, hardware design, FPGA implementation,
hardware architectures

1. Introduction

New communication technologies motivate the develop-
ment of more demanding applications that require the ex-
change of secure information, such as electronic mail, elec-
tronic banking, medical databases, multimedia, secure wire-
less systems and electronic commerce. Cryptography pro-
vides several security services at different levels by using
powerful mechanisms to protect data, but this comes at the
expense of computing power. The more demanding applica-
tions require that the cryptographic applications have a high
throughput and high flexibility [1].

Cryptographic algorithms are more efficiently imple-
mented in custom hardware than in software running on
general-purpose processors [2]. Authentication algorithms
or hash functions, considered cryptographic algorithms, do
not cipher the complete message; they are based on com-
pression functions that generate blocks of length m from
blocks of length n. The MD5 message digest algorithm is
used to generate a 128-bit output from an input message
of arbitrary length. This output is a compressed but irre-
versible representation of the entire input message, deter-
mining whether the message has been tampered within tran-
sit. Using MD5 in HMAC (keyed-Hash Message Authen-
tication Code) processes, authentication of data can be pro-
vided in applications such as IPsec and SSH.

Manuscript received November 30, 2007.
Manuscript revised May 31, 2008.
†The authors are with the Department of Computer Science,

National Institute for Astrophysics, Optics and Electronics, Luis
Enrique Erro 1, CP 72840, Sta. Ma. Tonantzintla, Puebla, México.

a) E-mail: algredobadillo@ccc.inaoep.mx
b) E-mail: cferegrino@ccc.inaoep.mx
c) E-mail: rcumplido@ccc.inaoep.mx
d) E-mail: mmorales@ccc.inaoep.mx

DOI: 10.1093/ietisy/e91–d.10.2519

Although hardware implementations are even more ef-
ficient for a specific instance, they depend on the design ef-
ficiency [2]. For MD5 hardware architectures there is a data
dependence, which limits the throughput that these archi-
tectures achieve. Similar structures can be found in other
algorithms with data dependence, and so it is necessary to
provide solutions for designing efficient hardware architec-
tures for these algorithms. In this paper, a new functional
description is proposed focusing on improving the perfor-
mance in order to achieve a high throughput/area ratio.

2. MD5 Algorithm

Many security protocols like in IPSec or SSH, utilize MD5
algorithm for electronic funds transfer, authentication of
electronic data transfers and encrypted data storage. This
hash function is important and widely deployed [3]. For ex-
ample, Secure Sockets Layer version 3 (SSL3) uses a con-
catenation of MD5 and SHA-1 algorithms as part of the
client authentication process.

MD5 is a 128-bit hash function, which produces a 128-
bit output, called message digest, from an arbitrary length
input message. The first step is to split the input message
into blocks of 512 bits. Next, each 512-bit block is padded
into 32-bit data words. It requires a 128-bit state buffer con-
sisting of four 32-bit words, see Fig. 1 (A). The compression
function consists of 32-bit elementary operations, such as
addition, XOR, AND, OR, and rotation. This compression
function is used 64 times for each 512-bit block, where each
round mixes the entire message block into the state buffer.
After 64 rounds, initial and final state buffers are added to
produce the output [4].

The computational structure of each round of this al-
gorithm is depicted in Fig. 1 (B) [5]. In general, the value
X[k] is the 32-bit data word (where k takes values from 1 to
16), for the i round, and the T [i] value represents the 32-bit
constant that also depends on the round. The 32-bit values
from A to D variables are updated in each round and the new
values are used in the following round. A given function (F,
G, H or I) with a defined shift is executed in each round. In
this structure, data dependence is present in additions and
32-bit operations, where data are necessary to compute the
next operation.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



2520
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.10 OCTOBER 2008

Fig. 1 (A) General block diagram of the MD5 algorithm. (B) Computa-
tional structure of each round.

3. Proposed Hardware Architecture and FPGA Imple-
mentation

Three hardware architectures are developed:

• Architecture 1 - the basic modular architecture with
minimal FPGA gate requirements, which is a straight-
forward design,
• Architecture 2 - partially unrolled architectures, which

uses unrolling technique to improve the throughput of
the straightforward design, and
• Architecture 3 - final architecture that uses a new func-

tional description.

Each one of these architectures was developed to obtain
a high throughput, using minimal hardware resources and
decreasing critical path.

The MD5 architectures are written in VHDL and sim-
ulated in FPGA Advantages 6, and implemented in Xilinx
ISE 9 for the measurement of hardware parameters such as
used logic and clock frequency. The proposed architectures
are implemented on a Virtex-II Xilinx FPGA (XC2V1000-
6) for the purposes of validation and comparison between
the proposed architectures. In the Sect. 4, comparisons
against related work are made.

Architecture 1: Basic Modular Architecture.
This hardware architecture is a straightforward imple-

mentation of MD5 algorithm that besides providing a ba-
sic work platform is optimized to achieve better perfor-
mance, see Fig. 2. The throughput is improved by using
modular parallelization, defining data buses and designing
specialized functional modules. Also, paths are balanced
and required latency is reduced to have the high perfor-
mance and compact architecture. The critical path is on the
MD5 Round v1 module, which executes main operations

Fig. 2 Block diagram of the MD5 v1 architecture.

Fig. 3 Block diagram of the MD5 Round v1 module.

Table 1 Implementation results of the MD5 algorithm for the three pro-
posed architectures.

Design MD5 v1 MD5 v2 4l MD5 v3
Parameter
Period (ns) 19.38 38.31 31.06

Frequency (MHz) 51.60 26.10 32.18
Slices 899 1387 2158

Clock cycles 65 16 16
Throughput (Gbps) 0.406 0.836 1.030
Throughput/Area 0.45 0.60 0.47

(Gbps/Slices x10-3)

and updates state buffers, see Fig. 3.
A Post-Place & Route (P&R) simulation model was

created to validate the operation of each design. The im-
plementation data taken from the P&R report are shown in
Table 1. By analyzing the MD5 v1 hardware architecture,
we identified that using partial unrolling could improve the
throughput of the hardware architecture.

Architecture 2: Partially Unrolled Architecture.
There are three versions: MD5 v2 2l, MD5 v2 4l,

and MD5 v2 8l, which are 2-loop, 4-loop and 8-loop par-



LETTER
2521

Fig. 4 Block diagram of the MD5 v2 4l architecture.

tially unrolled architectures that reached throughputs of
0.632, 0.836, and 0.789 Gbps, respectively. Figure 4
shows the MD5 v2 4l architecture, which is a 4-loop
partially unrolled. The main module of this architec-
ture is MD5 Round v2 4l that was obtained by modifying
MD5 Round v1. Despite of the feedback and data depen-
dence of the MD5 algorithm, the partially unrolled imple-
mentations improve the throughputs, by using more hard-
ware resources. Results indicate that unrolling or using
more hardware resources does not necessarily improve the
overall performance when comparing among architectures
with different levels of unrolling. For example, MD5 v2 4l
improves the performance of MD5 v2 2l (four loops ver-
sus two loops), but MD5 v2 8l does not improve the perfor-
mance of MD5 v2 4l (eight loops versus four loops). The
4-loop partially unrolled architecture, MD5 v2 4l, has the
best throughput, reaching 0.836 Gbps. From these results it
can be seen that, for this type of algorithms, fully unrolled
architecture does not necessarily leads to higher throughput,
being necessary to find a good trade-off between the number
of unrolled loops and hardware resources. MD5 v2 4l is the
partially unrolled architecture with the highest throughput.
Next, a new architecture is proposed, which has a shorter
critical path, thus a higher throughput.

Architecture 3: Final Proposed Architecture. In this
part, the final MD5 architecture, MD5 v3, is developed by
modifying the MD5 v2 4l architecture. In order to increase
the throughput, it is needed to reduce the critical path. For
reducing critical path, the general idea is to group logic com-
ponents, by dividing its MD5 Round v2 4l module into sev-
eral new functional blocks (RFx). This division depends on
the unrolled-loop number; therefore there are four new func-
tional blocks. Figure 5 shows MD5 v3 architecture, which
consists of four new RFx functional blocks. Each of these
RFx modules is integrated by 4 loops, which are partially
unrolled. Implementation results of the MD5 v3 are shown
in Table 1, reporting a throughput of 1.030 Gbps.

The MD5 v3 critical path is shorter than the critical
path of MD5 v2 4l architecture, due to the new functional
description. The feedback in each RFx shows a reduced
path time, each RFx is used four times, and after, the next

Fig. 5 Block diagram of the MD5 v3 architecture.

RFx is used. The main goal of this work is to achieve high
throughput, for ciphering data at a rate of 1 Gbps. The un-
rolled architectures report limited throughput, because they
connect more hardware resources with large paths. The ar-
chitecture MD5 v3 reduces this path by proposing a new
functional description, which is based on partially unrolled
loops. In Table 1, there are two metrics than can be high-
lighted: hardware resources and implementation efficiency
(throughput/area); MD5 v1 presents the most compact ar-
chitecture, but with a low throughput, whereas MD5 v2 4l
has the highest efficiency, using adequately fewer hardware
resources to compute the hash result. As result, the 4-
loop partially unrolled architecture (see Fig. 5) improves the
throughput significantly at the cost of higher FPGA resource
requirements. Although MD5 v3 utilizes the same num-
ber of unrolled loops that MD5 v2 4l, the specialization of
functional blocks results in a reduced critical path and a per-
formance improvement. This new functional description is
the main contribution of this work, and it can be used for
designing hardware architectures with high throughput for
other hash algorithms or processes, such as SHA-1, SHA-
2 or RIPEMD-160 algorithms, which present compression
functions with similar structure to the one of the MD5, see
Fig. 1 (B). For example, the compression function for the
SHA-2 algorithm (Fig. 6) has a basic structure similar to
MD5. It updates 32-bit words by executing operations such
as additions module 232, rotations and nonlinear functions.



2522
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.10 OCTOBER 2008

Fig. 6 Compression function of the SHA-2 algorithm for 512 bits.

Table 2 Implementation results of the MD5 v3 architecture. Note: Freq
= Frequency, Thrput = Throughput.

Design MD5 v3 MD5 v3 MD5 v3 MD5 v3
Parameter Virtex Virtex-II Virtex-4 Virtex-5
Period (ns) 46.06 31.06 23.41 18.69

Freq. (MHz) 21.70 32.18 42.71 53.49
LUTs 3863 3879 3872 1034 SRs
Slices 2201 2158 2157 3466 SLs

Clock cycles 16 16 16 16
Thrput. (Gbps) 0.694 1.030 1.366 1.711

Thrput/Area 0.31 0.47 0.63 1.65 /SR
(Gbps x 10-3) /Slice /Slice /Slice 0.49 /SL

4. Comparisons

In Sect. 3, the MD5 hardware architectures were imple-
mented on a Virtex-II. In this section, the final proposed
MD5 hardware architecture is synthesized, mapped, placed
and routed on Virtex, Virtex-II, Virtex-4 and Virtex-5 Xilinx
FPGAs (XCV1000-6, XC2V1000-6, XC4VLX80-11 and
XC5VLX50-3) to validate the hardware architecture and to
have a fair comparison against other works, see Table 2.
These implementation results show an improved throughput
only by changing FPGA technology. Hardware implemen-
tations for Virtex-II and Virtex-4 use a similar amount of
hardware resources, but the implementation on Virtex-4 re-
ports a higher throughput. The implementation on Virtex-5
uses a different technology, it uses slice registers (SRs) and
slice LUTs (SLs), achieving the highest throughput.

In Table 3, measurements for different MD5 implemen-
tations of commercial and research works are illustrated,
and although they use different techniques and hardware de-
vices, they have been considered for comparison purposes.
These MD5 architectures have different clock frequencies,
which depend on the particular design and technology. In
general, most of the hardware and software implementa-
tions of the hash functions do not have greater throughputs
than 1 Gbps, except the commercial implementation in [13].
However, comparing implementations in the same technol-
ogy, MD5 v3 reports an excellent performance, showing the
benefits of using the new functional description.

Considering unrolled architectures, [5] reports a fully
unrolled architecture on Virtex, which uses 4763 slices and
has a throughput of 0.354 Gbps. This fully unrolled ar-
chitecture and the partially unrolled architectures proposed

Table 3 Results comparison of the MD5 implementations on FPGA de-
vices.
Note: Freq. = Frequency, Thrput = Throughput, I = Iterative, U =Unrolled,
uP = Processor, P = Pipelined.

Work- Type Freq. Clock Thrput.
Device (MHz) cycles (Gbps)

[1]-Virtex-II 3000 I 60.20 66 0.467
[6]-Altera 1000 I 18.00 65 0.142

[7]-Virtex-II Pro 100 I 106.60 197 0.277
[8]-Virtex-II 250-5 I 81.00 66 0.627

[9]-Virtex-II-6 I 96.00 66 0.744
[10]-N.A. I 100.0 64 0.780

[5]-Virtex 1000 U 71.40 1 0.354
[11]-Virtex-II 4000 P 78.30 66 0.607
[12]-Virtex-II Pro uP 97.64 N.A. 0.331
[13]-Virtex-4-11 I N.A. 66 0.945
[13]-Virtex-5-3 I N.A. 66 1.345

This work -
Virtex-II 1000-6 U 32.18 16 1.030

Virtex-4 VLX80-11 U 42.71 16 1.366
Virtex-5 VLX50-3 U 53.49 16 1.711

in this work (MD5 v1 and MD5 v2 l2/4/8) report a low
throughput, which is affected by large critical paths, due to
the connecting of more hardware resources for placing and
routing. MD5 v3 with the new functional description helps
unrolled architectures to improve the throughput. Compar-
ing against the completely unrolled architecture described in
[5], MD5 v3 uses less than half of hardware resources, yet
achieves almost twice the throughput using the same tech-
nology (Table 3).

5. Conclusions

An efficient hardware design of the MD5 algorithm was pre-
sented, which is based on a new functional description that
helps to improve the performance in structures with high de-
pendence of data. This work shows that logic replication or
unrolling is not sufficient to increase the throughput of the
architecture, but it is necessary to group the logic blocks, to
make new functional description and to decrease the criti-
cal path time. Implementation results showed a significant
gain compared to the existing commercial cores and related
academic works.

References

[1] J.M. Diez, S. Bojani, L. Stanimirovi, C. Carreras, and O. Nieto-
Taladriz, “Hash algorithms for cryptographic protocols: FPGA im-
plementations,” 10th Telecommunications Forum TELFOR’2002,
Nov. 2002.

[2] R.R. Taylor and S.C. Goldstein, “A high-performance flexible archi-
tecture for cryptography,” Proc. Workshop on Cryptographic Hard-
ware and Embedded Systems 1999 (CHES), 1999.

[3] M. Szydlo and Y.L. Yin, “Collision-resistant usage of MD5 and
SHA-1 via message prepro-cessing,” IACR Eprint Archive, 2005.
Available at: http://eprint.iacr.org/2005/248.pdf

[4] R. Rivest, “The MD5 message-digest algorithm,” RFC 1321, MIT
and RSA Data Security, April 1992.

[5] J. Deepakumara, H.M. Heys, and R. Venkatesan, “FPGA implemen-
tation of MD5 hash algorithm,” Proc. IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE 2001), May 2001.



LETTER
2523

[6] K.K. Yong, W.K. Dae, W.K. Taek, and R.C. Jun, “An efficient imple-
mentation of hash function processor for IPSec,” Proc. Third IEEE
Asia-Pacific Conference on ASICs, Aug. 2002.

[7] J. Lu and J. Lockwood, “IPSec implementation on xilinx virtex-II
pro FPGA and its application,” Reconfigurable Architectures Work-
shop (RAW), April 2005.

[8] Alma Technologies, MD5 high performance hash function core,
Datasheet, 2002. Available at: http://www.alma-tech.com/
Data-Sheets/MD5 pre sales.pdf

[9] Helion Technology, High performance MD5 hash core for xilinx
FPGA, Datasheet, 2003. Available at: http://www.heliontech.com

[10] Jetstream Media Technologies, JetHash family: Secure hashing and

HMAC cores, Datasheet, 2006. Available at:
www.security-cores.com

[11] K. Jrvinen, M. Tommiska, and J. Skytt, “Hardware implementation
analysis of the MD5 hash algorithm,” Proc. 38th Hawaii Interna-
tional Conference on System Sciences, 2005.

[12] T.S. Ganesh, M.T. Frederick, A.K. Somania, and T.S.B. Sudarshanb,
“HashChip: A shared-resource multi-hash function processor ar-
chitecture on FPGA,” Integration: The VLSI Journal, vol.40, no.1,
pp.11–19, 2007.

[13] Helion Technology, MD5 hashing cores, Datasheet, 2007. Available
at: http://heliontech.com/md5.htm


